Combined Equation Sheet
Atomic Mass Unit
\[\begin{equation}
u = 1.66056\times 10^{-27}~\textnormal{kg} = 931.5 \textnormal{MeV/c}^2.
\end{equation}\]
Nuclear Mass Deficit
\[\begin{equation}
\Delta M(A,Z) = M(A,Z) - (ZM_{p} + NM_{n}).
\end{equation}\]
Binding Energy Equation
\[\begin{equation}
-\Delta M(A,Z) = B
\end{equation}\]
Nuclear Mass Density
\[\begin{equation}
\rho_{m} = \frac{M}{V} = \frac{3m_{n}}{4\pi r^{3}_{0}}
\end{equation}\]
Nuclear Charge Density
\[\begin{split}\begin{equation}
\rho_{c} = \frac{Q}{V} = \frac{3Ze}{4\pi r^{3}_{0} A}\\
\end{equation}\end{split}\]
Cross-sectional Area
\[\begin{equation}
\sigma = \pi (2R)^{2}
\end{equation}\]
Mean Free Path
\[\begin{equation}
\lambda = \frac{1}{n\sigma}.
\end{equation}\]
Beam Intensity Reduction in Target
\[\begin{equation}
N = N_0 e^{-x/\lambda}
\end{equation}\]
N Collisions in Target
\[\begin{equation}
C=N_0-N=N_0(1-e^{-x/\lambda}).
\end{equation}\]
Rutherford Scattering
\[\begin{split}\begin{equation}
\frac{d\sigma}{d\Omega_{R}} = \frac{z^{2}Z^{2}\alpha^{2}\hbar^{2}c^{2}}{4E^{2}} \frac{1}{sin^{4}(\theta/2)} \\
\end{equation}\end{split}\]
Mott Scattering Form
\[\begin{equation}
\frac{d\sigma}{d\Omega_{M}} = \frac{d\sigma}{d\Omega_{R}} \times [1-\beta^{2} sin^{2} (\theta/2)]
\end{equation}\]
Form Factor Modification
(44)\[\begin{equation}
\left(\frac{d\sigma}{d\Omega}\right)_{\textnormal{distributed}} = |F({\bf q}^{2})|^{2}\times \left(\frac{d\sigma}{d\Omega}\right)_{\textnormal{point-like}},
\end{equation}\]
Relation between Form Factor and Charge Distribution
(45)\[\begin{equation}
F(q) = \int_{-\infty}^{\infty} e^{i~{\bf q} \cdot {\bf r} / \hbar} ~\rho({\bf r})~d^{3} {\bf r}
\end{equation}\]
Saxon Woods Distribution
(46)\[\begin{equation}
\rho(r) = \frac{\rho_0}{1+{\textnormal{exp}}[\frac{r-a}{d}]}
\end{equation}\]
Typical Values For the charge density distribution
(47)\[\begin{equation}
\rho_{\textnormal{charge}}^{0} = \frac{\rho^0_{\textnormal{charge}}}{1+\textnormal{exp}[\frac{r-a}{d}]}
\end{equation}\]
Typical Values For the mass density distribution
(48)\[\begin{equation}
\rho_{\textnormal{mass}}(r) = \frac{\rho^0_{\textnormal{mass}}}{1+\textnormal{exp}[\frac{r-a}{d}]}
\end{equation}\]
Coulomb Energy Estimate
(49)\[\begin{equation}
E_{e} =
\frac{3}{5} \frac{Z^{2}e^{2}}{4\pi \epsilon_{0}R}
\end{equation}\]
Coulomb Constant assuming spherical integration
(50)\[\begin{equation}
a_{c} = \frac{3}{5} \times \frac{e^{2}}{4\pi \epsilon_{0} r_{0}} \approx 0.7~\textnormal{MeV}
\end{equation}\]
Nucleon Pairing Term
(51)\[\begin{split}\begin{align}
\delta_{\textnormal{pair}} &= +a_{p}A^{-1/2} ~~~~\textnormal{for N odd AND Z odd}\\
\delta_{\textnormal{pair}} &= 0 ~~~~~~~~~~~~~~~~~~~\textnormal{for N even OR Z even} \\
\delta_{\textnormal{pair}} &= -a_{p}A^{-1/2} ~~~~\textnormal{for N even AND Z even}\\
\end{align}\end{split}\]
Nucleon Asymmetry Term
(52)\[\begin{align}
B_{A} = -a_{a} (A-2Z)^{2}A^{-1}
\end{align}\]
MAGIC NUMBERS
(53)\[\begin{equation}
\bf \textnormal{Magic Nuclei -}~ Z~\textnormal{or}~N=2, 8, 20, 28, 50, 82, 126...
\end{equation}\]
SHELL MODEL POTENTIAL
SHELL QUANTUM NUMBERS AND PROJECTIONS
(55)\[\begin{equation}
\langle l^{2} \rangle = \hbar^{2}l(l+1)
\end{equation}\]
(56)\[\begin{equation}
\langle l_{z} \rangle = \hbar m_{z} ~~~~\textnormal{where}~~~~ m_z=0,\pm1,\pm2,...,\pm l
\end{equation}\]
(57)\[\begin{equation}
\langle s^{2} \rangle = \hbar^{2} s(s+1)
\end{equation}\]
(58)\[\begin{equation}
\langle s_z\rangle = \hbar m_{s} ~~~~\textnormal{where}~~~~ m_{s} = \pm \frac{1}{2}.
\end{equation}\]
SHELL MODEL NUMBER OF STATES
\[
n_{\textnormal{states}} = (2j+1)
\]
SPIN ORBIT COUPLING POTENTIAL OPERATOR
\[
V=V(r) \hat{L} \cdot \hat{S}.
\]
PARITY COMBINATION
(59)\[\begin{equation}
\pi_{total}=\pi_{1}\pi_{2}\pi_{3}\pi_{4} = \prod_{A}(-1)^{l} = + (\textnormal{even})~~\textnormal{or}~~-(\textnormal{odd})
\end{equation}\]
Magnetic Moment Free Nucleon
(60)\[\begin{equation}
\mu = g_{I} \frac{e\hbar}{2m_{p}} I = g_{I} I \mu_{N}
\end{equation}\]
Nuclear Magneton
(61)\[\begin{equation}
\mu_{N} = \frac{e\hbar}{2m_{p}} = 5.05\times 10^{-27}\textnormal{J/T} = 3.25 \times 10^{-8} \textnormal{eV/T}
\end{equation}\]
Magnetic Moment and Projection
(62)\[\begin{equation}
\mu = g_{j}~j~\mu_{N}
\end{equation}\]
(63)\[\begin{equation}
\mu_{obs} = g_j j_z \mu_N
\end{equation}\]
Magneton Estimates
(64)\[\begin{equation}
g = g_{l} \frac{j(j+1)+l(l+1)-s(s+1)}{2j(j+1)} + g_s \frac{j(j+1)+s(s+1)-l(l+1)}{2j(j+1)}
\end{equation}\]
(65)\[\begin{equation}
\frac{\mu}{\mu_N} = (j-\frac{1}{2})g_l + \frac{1}{2}g_s \rightarrow (stretched)
\end{equation}\]
(66)\[\begin{equation}
\frac{\mu}{\mu_N} = ((j+\frac{3}{2})g_l - \frac{1}{2}g_s)\frac{j}{j+1} \rightarrow (jackknife)
\end{equation}\]
G Factors
(67)\[\begin{equation}
g_{s} = 5.85 ~~\textnormal{(proton)} ~~~~~~ g_{s} = -3.826 ~~\textnormal{(neutron)}
\end{equation}\]
(68)\[\begin{equation}
g_l = 1~~\textnormal{(proton)} ~~~~~~~ g_l = 0 ~~\textnormal{(neutron)}
\end{equation}\]
Quadrupole Operations
(69)\[\begin{equation}
eQ_{EQM} = e\int \psi^{*} (3z^{2} - r^{2})\psi dV
\end{equation}\]
(70)\[\begin{equation}
Q_{EQM,sp} = - < r^{2} > \frac{2j-1}{2(j+1)}
\end{equation}\]
(71)\[\begin{equation}
< Q_{EQM, \textnormal{unfilled}} > = < Q_{EQM,sp} > \left [ 1-2\frac{n-1}{2j-1} \right ]
\end{equation}\]
NUCLEAR SURFACE BASED ON BETA
\[
R(\theta, \phi) = R_{av} [Y_{00}+\beta Y_{20} (\theta, \phi)]
\]
BETA BASED ON ELONGATION
\[
\beta = \frac{4}{3} \sqrt{\frac{\pi}{5}} \frac{\Delta R}{R_{av}}
\]
INTRINSIC ELECTRIC QUADRUPOLE MOMENT
\[
Q_{0} = \frac{3}{\sqrt{5\pi}} R_{av}^{2} Z \beta (1+0.16\beta)
\]
ENERGY LEVELS ROTATIONAL SPIN J
\[
\frac{\hat{L}^{2}}{2I} \psi = E_{J} \psi
\]
\[
\hat{L}^{2} Y_{JM}(\theta,\phi) = J(J+1) \hbar^{2} Y_{JM} (\theta, \phi)
\]
\[
E_{J} = \frac{\hbar^{2}}{2I}J(J+1)~~~~~J=0,2,4,\ldots
\]
ENERGY PREDICTION USING E2 State
\[
E_{J} = \frac{1}{6} J(J+1)E_{2}~~~~~~~~~J=0,2,4,\ldots
\]
VIBRATIONAL VARIATIONS
\[
R(t, \theta,\phi) = R_{av} + \sum_{\lambda>1}^{\lambda=\infty} \sum_{\mu=-\lambda}^{\mu=+\lambda} \alpha_{\lambda \mu}(t) Y_{\lambda \mu} (\theta, \phi)
\]
VIBRATIONAL ENERGY LEVELS
\[
E_{N} = \hbar \omega_{l} \left(\frac{2l+1}{2} +N \right)
\]
GAMMA RULES
\[
| I_{f} - I_{i} | \leq L \leq|I_{f} + I_{i}|
\]
Half Life
\[T_{1/2} = \tau \textnormal{ln}(2) = 0.693\tau\]
Mass Deficit
(72)\[\begin{equation}
Q = M(A,Z)^{2}c^{2} - [M(A-X,Z-Y)c^{2} + M(X,Y)c^{2}] > 0
\end{equation}\]
Q Value Beta- Decay in AMU
(73)\[\begin{equation}
Q_{\beta^{-}} = [ M(A,Z) - M(A,Z-1) ]c^{2}
\end{equation}\]
Q Value Beta+ Decay or EC in AMU
(74)\[\begin{equation}
Q_{\beta^{+}} = [ M(A,Z) - M(A,Z-1) - 2m_{e}]c^{2}
\end{equation}\]
Lambda and Matrix Element Relation
(75)\[\begin{equation}
\lambda = \frac{2\pi}{\hbar} ~| M_{if} |^{2} ~\frac{dn_{f}}{dE_{f}}
\end{equation}\]
(76)\[\begin{equation}
|M_{fi}| = \int \psi^{*} \hat{H} \psi dV.
\end{equation}\]
Beta Flux Relation
(77)\[\begin{equation}
N(p) = \frac{C}{c^{2}} p^{2} (Q-T_{e})^{2}
\end{equation}\]
Alpha Decay Geiger Nutall
\[
\log_{10} t_{1/2} = b_{1} \frac{Z}{Q^{1/2}} + b_{2}
\]
or
\[
\ln\lambda = -a_{1} \frac{Z}{Q^{1/2}} + a_2
\]
Alpha Tunnelling Transmission Probability
(78)\[\begin{equation}
X = Ae^{-αL}
\end{equation}\]
Reaction Kinetic Energy Calculation
(79)\[\begin{equation}
K_b^{1/2} = \frac{\cos \theta \sqrt{m_am_bK_a} \pm [m_am_bK_a \cos^2 \theta + (m_b + m_B)((m_B - m_a)K_a + m_BQ)]^{1/2}}{m_b + m_B}
\end{equation} \]
Breit Wigner Form
(80)\[\begin{equation}
\sigma_{BW}(E) = \frac{\pi}{(k)^2} \frac{(2J + 1)}{(2I_a + 1)(2I_A + 1)} \frac{\Gamma_a(E)\Gamma_b(E)}{(E - E_R)^2 + \Gamma(E)^2/4},
\end{equation}\]
Compound Branching Ratio
(81)\[\begin{equation} BR(C* \rightarrow b + B) = \frac{\Gamma_b}{\Gamma}.
\end{equation}\]
Fission Requirement
\[
2a_s A^{2/3}\leq a_{C} \frac{Z^2}{A^{1/3}} \quad \Rightarrow \quad \left(\frac{Z^2}{A}\right)_{\text{crit}} \geq \frac{2a_s}{a_c} \approx 49
\]
Fission Four Factor Formula
\[
k=ηϵpf
\]
Fusion Coulomb Barrier Limit
\[
\frac{Z_1Z_2e^2}{4\pi\epsilon_0(R_1 + R_2)} = 1.44 \frac{Z_1Z_2}{R_1 + R_2} \text{ MeV},
\]
Fusion Reaction Rate
\[
R_{12} = n_1 n_2 ⟨σv⟩.
\]
Fusion Maxwell Boltzmann
\[
P(v)dv = \sqrt{\frac{2}{\pi}} \left( \frac{m}{k_B T} \right)^{3/2} \exp\left( -\frac{mv^2}{2k_B T} \right) v^2 dv,
\]
Fusion Lawson Criteria
\[
L = \textnormal{energy output} / \textnormal{energy input}
\]
Fusion Energy Out
\[
E_{out} = n_d^2 ⟨σ_{dt}v⟩ Q t_c
\]